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Coarse Graining Basics

Alex de Vries 
Every word or concept, clear as it may seem to be, 

has only a limited range of applicability

Werner Heisenberg



Recent MARTINI work
› Mammalian membrane simulation of 

unprecedented complexity and duration.

Ingólfsson et al. J. Amer. Chem. Soc. 136,  14554 (2014)

• 63 different lipids, 
asymmetric layers.

• ~0.5 Mbeads, 40 μs
• enables the high-

resolution study of 
the distribution and 
dynamics of lipids 
interacting with each 
other.

• the next step is to 
add proteins.



Ingredients for Molecular Modeling

Van Gunsteren et al. Angew. Chem. Int. Ed. 45,  4064 (2006)

ENERGY
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SYSTEM



Popular Molecular Models
› All Atoms (OPLS-AA/L, 

CHARMM, AMBER)
• Each atom is treated as a particle

› United Atoms (GROMOS)
• Each atom is treated as a particle, 

except aliphatic CH, CH2, CH3

› Coarse grained superatoms 
(MARTINI)
• A group of (~4 for Martini) united 

atoms is treated as a particle
› DPPC molecule (a lipid) in UA and 

CG (MARTINI) representations



Common Potentials in Molecular Models
› BONDED: Simple harmonic/cosine bonds & angles

V φ( ) = Kn 1+ cos nφ +δ( )⎡⎣ ⎤⎦
n
∑V d( ) = k

2
d − d0( )2 V θ( ) = kθ

2
θ −θ0( )2

V d( ) = k
4
d 2 − d0

2( )2 V θ( ) = kθ
2
cosθ − cosθ0( )2

*

*

*

* type used in 
standard Martini



› Usually simple functions with some physical justification

› NON-BONDED: Coulomb interaction between partial charges (electrostatics)
	
 and Lennard-Jones potential (long-range dispersion and short-range repulsion)

› distance 
›

en
er

gy
 

› ε determines 
strength of the 
interaction 

› σ determines 
optimal distance 
of the interaction ECoulomb =

q1q2
r12

ELJ = Edispersion + Erepulsion

= 4ε −σ
6

r12
6 + σ 12

r12
12

⎛
⎝⎜

⎞
⎠⎟

Common Potentials in Molecular Models

› Full descriptions of force fields implemented in GROMACS are described in the manual, Chapter 4

* Martini uses modified, 
smoothed variants of these!



 | 10Basic MD Algorithm
› Numerically integrate Newton’s Law: F = m*a

› t=0

› t=1

› Forces & 
velocities

› displacements

› new displacements, etc...

 ma = mr = F r( ) = −∇E r( )
 
Δr = rΔt + F

2m
Δt( )2



A Very Simple System

2 particles

vacuum

constant E

V R( ) = 1
2
k R −R0( )2

› What goes in...

› Single oscillator treated classically in vacuo 



› Single oscillator treated classically in vacuo 

A Very Simple System

coordinates

vacuum

constant E

V R( ) = 1
2
k R −R0( )2

› What goes in... using Gromacs

.gro or .pdb

.top 
or .itp

.mdp

also algorithm for 
integration, number of steps, 
time step Δt, how often 
should we write output, and 
many other options! 

definition of the system 
and of the molecules and 
their bonded and 
nonbonded interactions



Adapted from Van Gunsteren et al. Angew. Chem. Int. Ed. 45,  4064 (2006)

.top

.itp
.gro

.mdp

grompp mdrun.tpr
Analysis uses g_... and scripts on .xtc, .trr, and .edr

CHECK!!!!

GROMACS .files and programs 



› Descriptions of the system
• Positions

• Velocities
• Forces

• Energies
• Other system information

Time-traces

› What comes out... using Gromacs

.edr

.xtc 
and/or
.trr

› The user must then extract this information 
and visualize it
• Gromacs has many tools for this!
• Always VISUALLY inspect your simulation 

(ngmx, VMD, Pymol, ...)



› Time-trace data can extracted and visualized

Visualization of some results

g_bond

Bond distance and relative 
velocity as a function of time



› Time-trace data can be collected in a distribution

Sampling a Distribution

Distribution of distances in 
harmonic oscillator model

g_bond

Bond distance and relative 
velocity as a function of time



› Relevant or interesting degrees of freedom
› Harmonic oscillator traces out a simple path 

described by
• Distance
• Relative velocity

Useful and Informative Description(s)

› What comes out...

Distance (d) versus relative velocity (v) 
for a simple harmonic oscillator.

For an oscillator at constant 
energy, the ellipse constitutes its 
phase space. If the energy is not 
constant, many ellipses span its 
phase space, characterized by 
different amplitudes. (The path is 
traversed in counter clock-wise 
fashion.)



› Describes possible states of the system
• Dimension 2*Ndof (R,P) or Ndof (R)

• A single system, in time, follows an allowed path 
through phase space visiting allowed states (R,P) 

A Tasting (Sampling) of Classical Phase Space

dof=degree(s) of freedom

› What comes out...



› The Boltzmann distribution is not observed for a 
single harmonic oscillator in vacuo

Potential and Distribution

p r( )∝
???
e
−
E r( )
kBT = e

−
k r−r0( )2
2kBTE r( ) = k

2
r − r0( )2



› The Boltzmann distribution is observed for 
anharmonically coupled oscillators

Potential and Distribution

p r( )∝
!!!
e
−
k r−r0( )2
2kBT



› Close link between potential and distribution

• Can be used to extract potential from structural data 

• Inverse Boltzmann techniques
• In MARTINI for fine-tuning bonded interactions

Potential and Distribution

p r( ) = e
−
E r( )
kBT

Q
⇔ E r( ) = −kBT ln p r( )Q⎡⎣ ⎤⎦

p r( )
E r( )

r→

Q = e
− Ei
kBT∑ → Z = e

−
E r( )
kBT dr∫



› Define states as 
regions in phase space
• Several realizations in 

the same state
• Free energy difference 

between two states is 
related to the ratio of 
the number of 
realizations in each 
state and/or the 
probabilities of finding 
the system in a 
conformation belonging 
to a state 

› The folded state of a protein is not a single conformation 

What we want to sample phase space for

K12 =
p2
eq

p1
eq =

e−βEi
i∈2
∑
e−βEj

j∈1
∑

= e−βΔG12
0

1 2
3

β = 1
kBT



Sampling: a Problem?!

Pictures from presentation by Sander Pronk 
and Van Gunsteren et al. Angew. Chem. Int. Ed. 45,  4064 (2006)

› (Free) energy landscape is 
complicated and huge

› Obtaining a complete picture of 
the possible conformations and 
their probability of occurring is 
hampered by the sheer number 
of them and the barriers between 
local minima in the (free) energy 
landscape



Enhanced Sampling Opportunities

Van Gunsteren et al. Angew. Chem. Int. Ed. 45,  4064 (2006)

Coarse-graining: 
reducing the number of 
degrees of freedom, 
preserving the relevant 
physics

Biasing: 
adapting interactions to 
reduce phase space and/or 
smoothen the free energy 
landscape

Jumping: 
exchanging snapshots 
between conditions to 
overcome barriers  

Multiscaling: 
reducing detail in the 
surroundings leading to 
effective interactions



Enhanced Sampling Opportunities

Coarse-graining: 
reducing the number of 
degrees of freedom, 
preserving the relevant 
physics

Multiscaling: 
reducing detail in the 
surroundings leading to 
effective interactions

Biasing: 
adapting interactions to 
reduce phase space and/or 
smoothen the free energy 
landscape

Jumping: 
exchanging snapshots 
between conditions to 
overcome barriers  

Van Gunsteren et al. Angew. Chem. Int. Ed. 45,  4064 (2006)

THERE IS NO 
SUCH THING 
AS A FREE 
LUNCH!



COARSE GRAINING BENEFITS
› Reduced Complexity

• Physics: not all detail is relevant for our question

› Efficiency: increase length and time scales
• Space: reduced density reduces number of 

interactions, e.g. in 4-to-1 mapping
• 4 (number) x 4 (pairs)
• 4 neighbor searching

• Time: smoother energy landscape, increased time step
• in the algorithm: 10-20
• effective time: 4

• Total: 2.5-5 103 speed-up



Martini Workshop 2015

COARSE GRAINING HowTo

Alex de Vries

A Simple(?) Example

Coarse-graining Caveats

Coarse-graining Philosophies



A SIMPLE(?) EXAMPLE
› 2-to-1 mapping scheme unto simple oscillator

• Weak coupling through collisions (gas)

› Harmonic 
springs

› Small mass

› Large mass

› Weak LJ 
potential



› 2-to-1 mapping scheme unto simple oscillator
• Coarse grain on two centers of mass

A SIMPLE(?) EXAMPLE



› THE 
REFERENCE
• A look at 100 ps 

trajectory for the 
system (looped)

• Energy exchange 
through 
collisions

• Run at constant 
Energy

A SIMPLE(?) EXAMPLE



› COARSE-GRAINED BEHAVIOR
• A look at 10 ps trajectory for one oscillator

A SIMPLE(?) EXAMPLE

Distance between CG centers 
after 2-to-1 mapping



› COLLECT DISTRIBUTIONS OF INTEREST
• Distribution reflects effective interaction

• Can possibly be achieved by a simple potential

A SIMPLE(?) EXAMPLE



› Harmonic force constant from normalized 
Gaussian distribution

› Fit for best r0 and σ gives:

DERIVING POTENTIAL

p r( )∝ e
−
E r( )
kBT ∝ e

−
k r−r0( )2
2kBT

1
σ π

e
−
r−r0( )2
σ 2

dr∫ = 1

k = 2kBT
σ 2

E r( ) = k
2
r − r0( )2

p r( ) = e
−
E r( )
kBT

Q
⇔ E r( ) = −kBT ln p r( )Q⎡⎣ ⎤⎦



› Harmonic force constant from Gaussian 
distribution

› Fit for best r0 and σ:

DERIVING POTENTIAL

E r( ) = k
2
r − r0( )2

p r( )∝ e
−
k r−r0( )2
2kBT

k = 2kBT
σ 2

k = 1,269kJ ⋅mol-1 ⋅nm-2

r0 = 0.1185nm



COARSE GRAINING CAVEATS
› Compare distributions at CG level

• In this simple(?) example, there are already some 
complications

• Frequent collisions required 
to get good statistics

• Need to account for rotation 
that increases the bond 
length because of centrifugal 
force (correlations between 
degrees of freedom)

• Must use r0 ≈ 0.11 nm in CG 
model instead of the 0.1185 
nm found by fitting

• K and r0 will depend on total 
energy (temperature)

W.G. Noid et al, e.g. C.R. Ellis et al. 
Macromol. Theory Simul. 20,  478 (2011)



COARSE GRAINING CAVEATS
› Smoother interaction, smoother motion

› Original, mapped › Coarse-grained



COARSE GRAINING CAVEATS

› THE MEANING OF TIME
• Smoother interaction, smoother motion

• Enables larger time steps
• Friction is lower, sampling speeds up
• Barriers are more easily overcome

› DETAIL IS LOST
• Physics may be different
• Need to be careful in interpreting dynamics 
• Exchange of energy between modes may be less 

efficient



COARSE GRAINING CAVEATS
› THE MEANING OF TIME

• Re-introduce friction through stochastic term 
• Part of benefit is gone, but dynamics may appear 

more realistic

 
Δr = rΔt + F

2m
Δt( )2 + ξ



Coarse-graining Philosophies
› HIERARCHICAL MODELING 

• From quantum mechanics to evolution of galaxies
• Interactions at less detailed level are the result of 

the collective interactions at more detailed level
• General method applicable to any system (like an 

algorithm)

› EFFICIENT MODEL AT CERTAIN SCALE 
•  Reproduce faithfully certain chosen properties

• Developed with certain application in mind
• Nevertheless aiming at wide use through 

considering the physics of the problems in mind

H.J.C. Berendsen Simulating the Physical World  Cambridge University Press 
(2007) 



Hierarchical modeling: pros and cons
› PRO

• UNBIASED
• Physics follows through the hierarchy of models

• STRAIGHTFORWARD MULTISCALING
• Enables reliable combination of levels of modeling
• Entirely general approach

› CON
• REQUIRES LARGE WORK LOAD

• Need detailed level simulations to derive CG potentials
• Complicated numerical potentials

• LIMITED VALIDITY
• Strictly valid for one state point only (new system, new 

potentials)



Semi-empirical modeling: pros and cons
› PRO

• CHEAP
• Parameterize on empirical data available
• Simple analytical potentials

• TRANSFERABLE
• After parameterizing building blocks, many similar systems 

can be treated straightforwardly

› CON
• BIASED

• Toward parameterized properties

• PROBLEMATIC MULTISCALING
• Different levels do not need to correspond closely
• Extensive validation required



MARTINI MODEL IS A SEMI-
EMPIRICAL FORCE FIELD 



› For an empirical CG model 
• Results of complex systems should be consistent 

with experiment even though not explicitly 
parameterized on that complex system

› MARTINI does pretty well for lipids
• Many examples are described in literature

› MARTINI extensions
• Proteins
• Sugars
• Polymers
• ...

What do we expect of the Martini CG model?

Marrink and Tieleman  Chem. Soc. Rev. 42, 6801 (2013)
Check out http://www.cgmartini.nl

http://www.cgmartini.nl
http://www.cgmartini.nl


Example: liquid hexadecane

› Standard Martini 
model* compared to 
mapped GROMOS 
53A6 model 

› Movie shows CG 
representation and is 
looping over 0.2 ns

› 320 hexadecane 
molecules in the 
system

› T = 300 K 

› * Parameterization discussed in the next lecture 



Example: liquid hexadecane

› Movie is looping 
over 5 ns

› 1 hexadecane 
molecule 0f 320 in 
the system

› Overall translation 
and rotation of the 
molecule is 
removed 



Characterizing a collection of structures

› Are conformations realistic?
› Time scale of sampling

› Schlitter’s formula for configurational 
entropy
• Upper bound
• Approximation for harmonic oscillator

› Procedure
• Fit (part of) the structure to remove 

translation (and rotation)

J. Schlitter Chem. Phys. Lett. 215, 617 (1993)

  
Strue ≤ S =

kB
2
ln 1+ kBTe

2

2
D

Mass-weighted covariance matrix



Mass-weighted covariance matrix  
Strue ≤ S =

kB
2
ln 1+ kBTe

2

2
D

  

D =

m1

K
r1
k − r1( )2

k
∑ …

1
K

r1
k − r1( ) rNk − rN( )

k
∑

  
1
K

rN
k − rN( ) r1k − r1( )

k
∑ 

mN

K
rN
k − rN( )2

k
∑

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

r1
k

m1

› Here, K is the number of conformations
›    is the position of atom/bead number 1 in frame k 
›    is the mass of atom/bead 1
› Note similarity to variance!

Baron et al J. Phys. Chem. B 110, 15602 (2006)



› MARTINI versus GROMOS 53A6
• Studied at FG (AL) and CG levels by Baron et al.

Configurational Entropy

Baron et al J. Phys. Chem. B 110, 8464 (2006)

› Mapped FG

  
Strue ≤ S =

kB
2
ln 1+ kBTe

2

2
D



 | 

› For phospholipid DPPC in bilayer

Configurational Entropy: Time Scale  
Strue ≤ S =

kB
2
ln 1+ kBTe

2

2
D

Average structures

Baron et al. J. Phys. Chem. B 110, 15602 (2006)

Build-up of sampling 
after mapping 



› MARTINI versus GROMOS 53A6
• Bonded distributions MARTINI and mapped FG differ

Bonded interactions: compare to FG model

Baron et al J. Phys. Chem. B 110, 8464 (2006)

› Mapped FG

• Some conformations 
of hexadecane are 
more favorable in FG 
because of short 
contacts but 
overlapping vdW 
spheres in CG



COARSE GRAINING SUMMARY
› SPEEDING UP SEARCH IN PHASE SPACE

• Use an effective interaction from distribution

• Smooths Potential Energy Surface
• Reduces number of interactions
• Increases effective time

› DETAIL IS LOST
• Beneficial: detail may not be required
• Detrimental: some system characteristics are gone



Thank you for your attention



› To compute a new position after a time interval ∆t 

› Similarly, for the new momentum 

› Combining these from t = 0 

Integrating equations of motion

pi t( ) = mi
dri t( )
dt

; Fi t( ) = dpi t( )
dt

ri t + Δt( ) = ri t( ) + pi τ( )
mi

dτ
t

t+Δt

∫ ≈ ri t( ) + pi t( )
mi

Δt

pi t + Δt( ) = pi t( ) + Fi τ( )dτ
t

t+Δt

∫ ≈ pi t( ) + Fi t( )Δt

ri Δt( ) = ri 0( ) + 1
mi

pi 0( ) + Fi ′τ( )d ′τ
0

τ

∫⎡
⎣⎢

⎤
⎦⎥
dτ

0

Δt

∫

≈ ri 0( ) + pi 0( )
mi

Δt + Fi 0( )
2mi

Δt( )2



Verlet Integrator

Taylor expansion of the position in time, assuming 
constant force

F = ma = m dv
dt

= m d
dt

dr
dt

⎛
⎝⎜

⎞
⎠⎟ = m

d 2r
dt 2

r t + Δt( ) = r t( ) + dr
dt t

Δt + 1
2!
d 2r
dt 2 t

Δt( )2 + ...

r t − Δt( ) = r t( )− dr
dt t

Δt + 1
2!
d 2r
dt 2 t

Δt( )2 − ...

r t + Δt( ) + r t − Δt( ) = 2r t( ) + d
2r
dt 2 t

Δt( )2 +O( Δt( )4 )

⇒ r t + Δt( ) + r t − Δt( ) ≈ 2r t( ) + F
m

Δt( )2



F = m d 2r
dt 2

r t + Δt( )− r t( ) ≈
r t( )− r t − Δt( )

+ F
m

Δt( )2r t + Δt( )− r t( )

F
m

Δt( )2

r t( )− r t − Δt( )
r t( )

r t − Δt( )
r t + Δt( )

Verlet integrator from Newton’s Law

r t + Δt( )− r t( )⎡⎣ ⎤⎦ − r t( )− r t − Δt( )⎡⎣ ⎤⎦ =
F t( )
m

Δt 2

 is the difference of the difference, or the change in the change
d 2r
dt 2



Conservation of Energy
› In practice, even with small time-steps, 

conservation of energy is difficult to achieve

ΔE = −W = −F•ΔR

.mdp

ΔE = −W = − F• dR∫

Too large a time-step takes the 
system away from its potential 
energy surface and leads to 
failure of energy conservation.



Practical considerations: Conservation of Energy
› In numerical approaches, time-step should be such that 

PES is followed

› We should end up at the 
potential energy we expect 
or energy is lost from/added 
to the system

ΔEpred ≈ −F r( )• F r( ) Δt( )2
2m

Δr ≈
F r( ) Δt( )2
2m

ΔE = −F r( )•Δr
 ma = mr = F r( ) = −∇E r( )

 
Δr = rΔt + F

2m
Δt( )2

 
r = v = dr

dt
; r = a = d

2r
dt 2E r( ) U r( )and               are used interchangeably
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› At atomistic level, time step for fastest vibrations

• Time step ~1 fs

Appropriate time step for sampling

Etot
R

M

p R( ) 

1 / Δtvib = ν IR = cvIR ≈

3*108 * 3,000 ms−1cm−1⎡⎣ ⎤⎦
≈ 1*1014Hz



Cut-off noise
› Particles start/stop interacting at certain distance: 

energy is not conserved

Rc
Rc



› In practice, energy conservation is impossible to achieve

 ma = mr = F r( ) = −∇E r( )

 
Δr = rΔt + F

2m
Δt( )2

Practical considerations: Conservation of Energy

› Couple to heat bath to dissipate or gain heat
› Popular methods are velocity rescaling (e.g. 

Berendsen) or extended ensembles (e.g. Nose-Hoover)
› Strictly speaking, we are not doing Newtonian 

mechanics
› Time step and bath coupling strengths are part of the 

parameter set!
› Martini uses non-bonded potentials without jump at 

cut-off (shifted potentials) 


