

Looks of the Martini model

Welcome to the Martini zoo!

SJ Marrink & DP Tieleman, Chem. Soc. Rev. (2013)

Key features:

- Chemical specificity
- Fast (10³ speed-up)
- Compatibility (building block approach)
- Versatility

Parameterization:

TOP DOWN *Thermodynamic data* BOTTUM UP *Atomistic simulations*

Overview of this lecture "Martini Extensions"

Sweet Martini Mono-, Di-, and Oligo-saccharides

Covering all the bases DNA, RNA

Nanoparticle mania
Fullerene, CNTs, Graphene, Gold

extension of Martini force field to carbohydrates

Lopez et al, JCTC, 2009

Choosing the mapping

Parameterization of non-bonded interactions

Particle types

molecule	B1	B2	B3	B4	B5	B6
glucose (G)	P1	P4	P4			
fructose (F)	P1	P3	P4			
sucrose (SUC)	P1	P2	P4	P1	P1	P4
maltose (M)	P1	P2	P4	P2	P1	P4
cellobiose (C)	P1	P2	P4	P2	P1	P4
kojibiose (K)	P1	P2	P4	P2	P4	P1
sophorose (S)	P1	P2	P4	P2	P4	P1
nigerose (N)	P1	P2	P4	P2	P4	P1
laminarabiose (L)	P1	P2	P4	P2	P4	P1
trehalose (T)	P1	P2	P4	P2	P1	P4

Testing: partitioning free energy

		All-atom	(Gromo	s)	Ma	rtini	Exp
molecule		ΔΔG _{OW} (AA) (kJ mol ⁻¹)	log Pow(AA)	∆G ^{ar} (CG) (kJ mol ⁻¹)	ΔΔG _{ow} (CG) (kJ mol ⁻¹)	log Pow(CG)	log Pow (exp)
glucose (G)		15	-2.5	-60	17	-2.9	-2.8
tructose (F)		11	-2.0		16	-2.7	
sucrose (SUC)		18	-3.0		20	-3.4	-3.3
maltose (M)		25	-4.2		24	-4.0	
cellobiose (C)		24	-4.0		24	-4.0	
kojibiose (K)		28	-4.7		24	-4.0	
sophorose (S)		32	-5.4		24	-4.0	
nigerose (N)		30	-5.0		24	-4.0	
laminarabiose (L)		29	-5.0		24	-4.0	
trehalose (T)		28	-5.0		24	-4.0	-3.78

Parameterization of bonded interactions

o Angles and dihedrals should account for rotameric states o Bonded parameters fitted to mapped atomistic simulations o Most distributions unimodal, except for 1-6 linked sugars

Testing on oligosaccharides: amylose

o Amylose is 1-4 linked glucose oligosaccharide (principal component of starch)
 o Amylose in apolar solvents forms helical structure (V-amylose)
 o Pitch length around 7-8 Angstrom (6-8 sugars)

Application: sugar-induced mixing of membrane domains

\rightarrow Domains destroyed by sugars !!

Moiset et al, JACS, 2014

Application: sugar-induced mixing of membrane domains

 \rightarrow Domains destroyed by disaccharides, monosaccharides have no effect

Moiset et al, JACS, 2014

Application: sugar-induced mixing of membrane domains

Experiments confirm in-silico predictions
 (or: Experimental set-up validated by computational microscopy)

Moiset et al, JACS, 2014

Covering all the bases

Coarse-grain Martini model of DNA

Parameters for both single-stranded and double-stranded DNA

Compatible with all other Martini models

Extension to RNA in progress

Uusitalo et al., JCTC, 2015

Mapping of DNA

TN0

SC2

SC2

SN0

00

SN0

Particle types

Building blocks selected to match partitioning data

Large spread in data for all-atom models

Guanine/cytosine more hydrophilic than adenine/thymine

Standard particle types can be used

Particle types

Special interactions

Base-base interactions shorter range than rest of Martini

"T" particles

T(iny) particles interact with each other using a reduced σ =0.32 nm but have S type interactions with all other particles

Particle types

Special interactions

Hydrogen bonding mimicked with specific pair interactions

We use special bead types for the hydrogen bonding particles, adding eight special beads that are meant solely for this purpose. These beads interact with all other bead types based on their underlying chemical group

Particle types

Relative strength of h-bonding between bases reproduced

	AMBER	CHARMM	Martini	
base pair	$\Delta G (kJ mol^{-1})$	$\Delta G (kJ mol^{-1})$	$\Delta G (kJ mol^{-1})$	
C-G	-22.6 ± 1.6	-16.5 ± 1.3	-10.0 ± 1.0	
A-T	-15.8 ± 0.8	-13.6 ± 0.2	-9.8 ± 1.5	
C-T	-11.3 ± 1.2	-11.8 ± 0.3	-9.2 ± 0.8	
T-T	-9.4 ± 0.6	-6.5 ± 0.2	-8.7 ± 1.0	
A-G	-8.8 ± 1.0	-9.6 ± 0.7	-8.3 ± 0.8	
G-T	-7.8 ± 1.0	-5.2 ± 0.2	-6.2 ± 1.0	
A-A	-4.6 ± 0.6	-5.8 ± 0.7	-5.6 ± 1.0	
A-C	-3.2 ± 0.8	-2.6 ± 0.8	-5.1 ± 1.0	
C-C	-1.6 ± 1.5	-1.0 ± 1.2	-5.0 ± 1.0	
G-G	3.7 ± 1.7	5.4 ± 0.3	-4.8 ± 0.5	

Bonded interactions

Validation of the basic DNA model

Realistic radius of gyration for ssDNA

> (at least compared to all-atom models)

Double stranded DNA (dsDNA)

<u>dsDNA structurally similar to</u> <u>all-atom models</u>

<u>Stability, however, requires</u> <u>an elastic network</u>

Stiff:

For rigid DNA structures and short double strands, runs with larger time step

Soft:

More flexible strand and more freedom in movements of nucleobases, requires shorter time step

Validation of double stranded DNA

<u>Soft model has a realistic</u> <u>persistence length</u>

about L=60 nm in 100 mM salt (experimentally about L=50 nm)

Validation of double stranded DNA

<u>Counterion condensation</u> on dsDNA reproduced

(at a qualitative level)

sodium localises further away from DNA than in AA, due to CG bead size

chloride not completely excluded from DNA due to implicit screening in Martini

What can we do with Martini DNA?

<u>Do</u>

- Study ssDNA with other biomolecules
- Study dsDNA with other biomolecules
- Modify the elastic network for more complicated DNA structures
- Expect to see RNA parameters soon(ish)

Don't

- Try to hybridise ssDNAs to dsDNA
- Expect DNA to drastically change conformation

Nanoparticle mania

Vanograins

Gold

Fullerene

Chaphene

Polymers

Carbon Nanotubes

Dendrimers

Mapping of fullerene

Two models tested

- 16 bead model (4-to-1)
- 20 bead model (3-to-1)

I 6-bead model more closely reproduces sublimation enthalpy due to less optimal packing

Elastic network to keep overall geometry

Monticelli, JCTC, 2012

Finetuning of non-bonded interactions

Fullerene-solvent interactions

Based on SC4 type (benzene), but slightly modified to reproduce partitioning

	Experiments							
∆G_transfer	benzene	octane	cyclohexane	acetone	1-butanol	ethanol		
benzene								
octane	8.6							
chyclohexane	12.1	3.5						
acetone	15.2	6.6	3.1					
1-butanol	15.9	7.3	3.8	0.7				
ethanol	22.5	13.9	10.4	7.4	6.7			
water	105.3	96.7	93.2	90.1	89.4	82.7		

MARTINI								
∆G_transfer	benzene	octane	cyclohexane	acetone	1-butanol	ethano		
benzene								
octane	10.1							
chyclohexane	12.9	2.7						
acetone	14.5	4.4	1.7					
1-butanol	18.4	8.2	5.5	3.8				
ethanol	23.1	12.9	10.2	8.5	4.7			
water	85.5	75.3	72.6	70.9	67.1	62.4		
verage unsigned error (excluding water)	1.4							

Monticelli, JCTC, 2012

Finetuning of non-bonded interactions

Self interactions

Reproducing fullerene-fullerene PMFs in different solvents

Monticelli, JCTC, 2012

Validation example of fullerene model

Application example of fullerene model

Lipid bilayer: a perfect solvent for fullerene

Wong-Ekkabut et al, Nat. Nanotech., 2008

Dry Martini coarse-grained force field for lipid membrane simulations with implicit solvent

C. Arnarez et al, JCTC, 11:260–275, 2015

Dry Martini

Reshuffling non-bonded interactions

Dry Martini

Validation examples

Lipid phase behaviour

Structural membrane properties

Dry Martini

Potential application areas

Large scale membrane deformations

Combining with wet Martini

Enjoy Sampling Martinis !!

