

A new topology: what do we need?

A new topology: what do we need?

Mapping (center of mass)

4 heavy atoms to 1 bead

(can be finer or coarser)

Not unique

Use chemical intuition

Get inspiration from other Martini molecules

No partial charges

Respect symmetry

Be consistent

AlaArgPheAla peptide

A new topology: what else do we need?

$$U(\vec{r}) = \sum U_{bonded}(\vec{r}) + \sum U_{nonbonded}(\vec{r})$$

A set of intramolecular potentials that recreate the correct distribution of relative configurations

A set of interparticle potentials that recreate the correct partitioning behavior (and density, surf. tension, etc.)

Where do the target distributions/partitions come from?

Partition data

Simulations with finer models

Experiments

Bond stretching mapped from a GROMOS 54a6 simulation

ΔG, typically from thermodynamic integration (TI) simulations

$$U_{bonded}(\vec{r})$$

 $U_{nonhonded}(r)$

Which bonded potentials? (besides Boltzmann-inverted ones)

Simple potentials ensure portability across simulation software

Are often optimized

May be insufficient (multimodal distributions, for instance)

Bias towards potentials implemented in GROMACS

Bonds:

$$U(x) = \frac{1}{2}k(x - x_0)^2$$

Simple

Numerically stable

Symmetric distribution (Gaussian)

Angles:

$$U(\theta) = \frac{1}{2}k(\cos(\theta) - \cos(\theta_0))^2$$

Numerically stable, unlike $U(\theta) = \frac{1}{2}k(\theta - \theta_0)^2$

$$U(\theta) = \frac{1}{2} k (\theta - \theta_0)^2$$

Weak potential towards colinearity

$$U_{bonded}(\vec{r})$$

 $U_{nonbonded}(\vec{r})$

Which bonded potentials? (besides Boltzmann-inverted ones)

3.5

Simple potentials ensure portability across

Are often optimized

May be insufficient (multimodal distribu

Bias towards potentials implemented in G

Bonds:

$$U(x) = \frac{1}{2}k(x - x_0)^2$$

Angles:

$$U(\theta) = \frac{1}{2}k(\cos(\theta) - \cos(\theta_0))^2$$

3.0 2.5 1.5 1.0 0.5 0.0 0 20 40 60 80 100 120 140 160 180 Angle

Numerically stable, unlike
$$U(\theta) = \frac{1}{2}k(\theta - \theta_0)^2$$

Weak potential towards colinearity

$$U_{bonded}(\vec{r})$$

Which bonded potentials?

Dihedral angles:

$$U(\phi) = \frac{1}{2} k (\phi - \phi_r)^2$$

Periodic

Can have multiple minima (n)

Suitable for keeping torsions that do not flip

Both types become unstable if any two of the constructing bonds become colinear!

$$U_{bonded}(\vec{r})$$

Typical Martini approach:

Obtain target distribution

Repeat until happy Assign an analytical potential with estimated/adjusted parameters

Simulate the tentative CG model

Compare resulting distributions to target ones

$$U(x) = \frac{1}{2}k(x - x_0)^2$$
, $(k : kJ/mol \cdot nm^2, x : nm)$

$$U(x) = \frac{1}{2}k(x - x_0)^2$$
, $(k : kJ/mol \cdot nm^2, x : nm)$

Constraints

Highly localized distributions

Narrow distributions require stiff potentials

Stiff potentials require short time steps

At the Martini scale the breadth of stiff distributions, and the high oscillation frequencies, become unimportant

Constraints

Highly localized distributions

Narrow distributions require stiff potentials

Stiff potentials require short time steps

At the Martini scale the breadth of stiff distributions, and the high oscillation frequencies, become unimportant

Use constraints

Interparticle distance becomes a system constant (1 DOF less)

7818 J. Phys. Chem. B, Vol. 111, No. 27, 2007

 $U_{nonbonded}(\vec{r})$

Marrink et al.

TABLE 3:	Thermodynamic	Properties of	of the	CG I	Particle '	Types ^a
----------	---------------	---------------	--------	------	------------	--------------------

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				$\Delta G^{ ext{vap}}$		$\Delta G^{ m hyd}$		$\Delta G_{ m HW}^{ m part}$		$\Delta G_{ ext{CW}}^{ ext{part}}$		$\Delta G_{ m EW}^{ m part}$		$\Delta G_{ m OW}^{ m part}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ype	building block	examples	exp	CG	exp	CG	exp	CG	exp	CG	exp	CG	exp	CG
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Q _{da}	H ₃ N ⁺ C ₂ OH	ethanolamine (protonated)				-25		< -30		-18		-13		-18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$H_3N^+-C_3$	1-propylamine (protonated)				-25		< -30		-18		-13		-18
CL_HO															-18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q_a	PO_4^-	phosphate												-18
Ps. Hs N=Cs=Q acetamide sol sol -40 -25 -27 -28 (-20) -18 -15 -13 -18 -13 -18 -18 -21 -23 -14 -10 -7 -7 -8 -18 -21 -23 -14 -10 -7									-						-18
P ₄ HOH (× 4) water															-18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										(-20)				-8	-10
P ₃ HO C ₂ =O acetic acid C=NH=C=O methylfomamide C=35 C=18 C=29 C=18 C=21 C=9 C=0 C=0 P ₂ C ₂ =OH ethanol C=22 C=16 C=21 C=14 C=13 C=17 C=10 C=6 C=1 P ₁ C ₃ =OH C=10 C=10 C=20 C=16 C=21 C=14 C=18 C=21 C=20 C=18 C=21 C=20 C		1										-10		-8	-9
C-NH-C=O methylformamide		$HO-C_2-OH$	ethanediol	-35	-18	-33	-18	-21	-23		-14		-7	-8	-9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-29		-19		-9		-2		-1	- /
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										_				-5	<u>-7</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										_		_		-2	-2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	C₃—OH	1 1											1	-1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. T	C OII												0	-1
Na C3=O 2-propanone -17 -13 -16 -9 -6 -7 1 0 -1 2 -2 C-NO 2 nitromethane -23 -13 -17 -9 -6 -7 0 2 - C3=N proprionitrile -22 -13 -17 -9 -5 -7 0 2 - C-O-C=O methylformate -16 -13 -12 -9 (-6) -7 (4) 0 (-1) 2 (0 C2HC=O propanal -13 -15 -9 -4 -7 0 2 2 No C-O-C2 methoxyethane -13 -10 (-8) -2 (1) -2 6 (3) 6 (3) C5 C3-SH 1-propanethiol -17 -10 1 5 10 10 10 C4 C2=C2 2-butyne -15 -10 -1 5 9 13 13 13 13 13 13 13 13 13 </td <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td> <td></td> <td>4</td> <td>3</td>		•									_	-		4	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1 10							` /				(3)	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1 1					_		1		-1		-1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-					_	_			_			-2	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1 1				_	_	-	(4)	•	(1)		1	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			<u> </u>	-16					•	(4)				(0)	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-		12			_				_	_		3	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	_				(-8)		(1)				(3)	_	(3)	6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						_6		(7)						(9)	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_				_		(7)	_					(9)	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-15		_		11						11	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			*	_10					_	1.4				11	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-10		-4		(1)	_	14				13	14
2-bromopropane	_			-16		_1		12						12	14
C ₂ C ₃ propage gas -10 8 10 16 15 14 1		C3 A				_	_	12						12	14
	7	Ca												14	16
C_1 C_4 butane -11^b -10 9 14 18 18 18 14 1		C ₄	butane	-11^{b}	-10	9	14	18	18		18		14	16	17
	∠ 1	C 4				_		10						16	17

$$U_{bonded}(\vec{r})$$

$$U_{nonbonded}(\vec{r})$$

Verify the reproduction of partition free energies and adjust bead types accordingly

$$\Delta G_{part} = kT \ln([solute]_W/[solute]_O)$$

Significant counts in both phases must be obtained
The interface may play a role

Too expensive to be used atomistically as a source of target free-energy data

$$U_{bonded}(\vec{r})$$

$$U_{nonbonded}(\vec{r})$$

A more efficient approach through the hydration free-energies

Thermodynamic integration:

Almost always more efficient than running a system with separated phases

Can be used with atomistic systems

 $U_{nonbonded}(\vec{r})$

Important: tailor the matched data to your applications!

Biomolecular applications: hydrophobic/hydrophilic

Not exclusively partitions

When a finer mapping is needed (to represent planar geometries, for instance)

Very high bead density

Effective very deep energy well (condensation)

Equilibrium distance of ~0.52 nm

The S-beads!

25% shallower potentials with shorter equilibrium distance (~0.43nm)

Allow the correct packing of rings

Prevent condensation of the system

Follow the same scale as regular Martini beads (SC1...SP5...SQda)

When to use?

To get correct densities

To get correct packing distances

Interaction with regular beads still follows the regular potential: validate the free energy of interaction!

Important notes

Keep the Martini philosophy in mind but tailor it to your applications

If parameterizing solvents/melts, aim to reproduce bulk properties

For polymers

Include long-range structural properties in the process (RoG, secondary structure ...)

Don't give up: restrained secondary structures may be acceptable

But may require structure-dependent bead assignment.

Tune the nonbonded interactions of different residues individually

Beware of divergent behavior toward the termini.

Tips & tricks

Don't over-restrain the bonded interactions

Redundancy makes convergence difficult to achieve

Often the nonbonded interactions push a free angle/dihedral into place

Exclusions and fake bonds between nonbonded particles

Beware of beads at distances below the nonbonded repulsion limit — consider excluding them

Bonds can be made between nonconsecutive beads

Cholesterol

The Martini model

Fewer particles
Softer potentials

>1000x speedup

up to 40 fs timesteps (20-40x larger than atomistic)

but...

```
bolids that rotated more than 30 degrees:
atom 1 atom 2 angle previous, current, constraint length
       5 33.9 0.4466 0.3470 0.3460
     5 7 56.6 0.4478 0.4017 0.4060
          5 34.9 0.3997 0.2857 0.2940
Step 8073, time 322.92 (ps) LINCS WARNING
relative constraint deviation after LINCS:
rms 0.505886, max 1.177047 (between atoms 5 and 7)
bonds that rotated more than 30 degrees:
atom 1 atom 2 angle previous, current, constraint length
        4 83.5 0.2731 0.2632 0.2720
     3 5 83.8 0.3470 0.4081 0.3460
     5 7 117.0 0.4017 0.8839 0.4060
          5 47.2 0.2857 0.3689 0.2940
Wrote pdb files with previous and current coordinates
Step 8074, time 322.96 (ps) LINCS WARNING
relative constraint deviation after LINCS:
rms 1662.365558, max 4036.032715 (between atoms 5 and 7)
bonds that rotated more than 30 degrees:
atom 1 atom 2 angle previous, current, constraint length
       4 91.6 0.2632 62.9947 0.2720
     3
       5 86.5 0.4081 117.0789 0.3460
       7 89.6 0.8839 1639.0353 0.4060
     4
       5 94.3 0.3689 101.7266 0.2940
       3 103.8 0.3853 11.2611 0.4930
          4 86.7 0.6435 41.9594 0.6040
Wrote pdb files with previous and current coordinates
Segmentation fault (core dumped)
```



```
#!/bin/bash
while mdrun -v -cpi state.cpt -noappend -maxh 0.05
do
    rm -rf *part*
done
```

What can be done?

Decrease the time step

Constrain the whole thing

Increase the bead masses

Use virtual interaction sites

Virtual interaction sites?

What I did

Chose three atoms for my frame

Obtained the average positions of the remaining four atoms relative to the frame

Defined those four atoms as different virtual sites

And it worked!

Virtual site version ran stable at 40fs (total 1.6µs)

Comparing to a simulation with the original topology ran at 20fs (total 3.5µs)

But large systems with many cholesterols simulated for long times still crashed...

Hopanoids

Involved in different kinds of bacterial membrane adaptations

CG parameterization

Started from an existing atomistic topology

Chose a mapping scheme and a frame for virtual sites

Constructed virtual sites from the average positions of a mapped atomistic simulation

Stable?

```
step 6937800, will finish Mon Aug 19 15:15:59 2013imb F
step 6937900, will finish Mon Aug 19 15:15:59 2013imb F
                                                        5%
step 6938000, will finish Mon Aug 19 15:15:59 2013imb F
                                                        4%
step 6938100, will finish Mon Aug 19 15:15:59 2013imb F
                                                        5%
step 6938200, will finish Mon Aug 19 15:15:59 2013imb F
                                                        4%
step 6938300, will finish Mon Aug 19 15:15:59 2013imb F
                                                        2%
step 6938400, will finish Mon Aug 19 15:15:59 2013imb F
                                                        1%
step 6938500, will finish Mon Aug 19 15:15:59 2013imb F 5%
step 6938600, will finish Mon Aug 19 15:15:59 2013imb F
                                                        2%
step 6938700, will finish Mon Aug 19 15:15:59 2013imb F
                                                        5%
step 6938800, will finish Mon Aug 19 15:15:59 2013imb F
                                                        2%
step 6938900, will finish Mon Aug 19 15:15:59 2013imb F
                                                        5%
step 6939000, will finish Mon Aug 19 15:15:59 2013imb F
                                                        3%
step 6939100, will finish Mon Aug 19 15:15:59 2013imb F
                                                        2%
step 6939200, will finish Mon Aug 19 15:15:59 2013
A list of missing interactions:
               Bond of 2 missing
              Angle of 2 missing
                                        - 2
```

Program mdrun, VERSION 4.6.3

Source code file: /manel/gromacs-4.6.3/src/mdlib/domdec top.c, line: 389

Software inconsistency error:

One or more interactions were multiple assigned in the domain decompostion For more information and tips for troubleshooting, please check the GROMACS website at http://www.gromacs.org/Documentation/Errors

"There's No Room For the Weak" (Joy Division)

Is the bonded structure too rigid?

cholesterol

bacteriohopanetetrol

Success!

Cholesterol in bilayer (30µs)

Success!

Bacteriohopanetetrol in POPC bilayer (3µs)

3:1 POPC:STEROL