

Martini Workshop 2017

"Martini Basics"

Hands on: how to prepare a Martini

"gin and vermouth are combined at a ratio of 2:1, stirred in a mixing glass with ice cubes, then strained into a chilled cocktail glass and garnished with an olive"

- A Dry Martini is made with dry gin and white vermouth
 - Martini Rosso uses red vermouth (caramel flavor)
 - Vodka Martini uses vodka instead of gin
- A Perfect Martini uses equal amounts of sweet and dry vermouth
 - Zen Martini: Martini with no gin at all, and no vermouth either

"Martini should be made by filling a glass with gin, then waving it in the general direction of Italy"

Overview of this lecture

How to become a Martini expert in just one week

- > Basic modeling principles
- Looks of the Martini model
- > Validation of the Martini model
- > Limitations of the Martini model
- > Applications of the Martini model

Basic modeling principles

Four essential ingredients

1. Degrees of freedom:

All-atom? Coarse-grained? Implicit solvent?

2. Force field:

Bonded, Electrostatic, **VanderWaals** interactions

4. Boundary conditions:

Periodic or fixed Pressure, **Temperature**

3. Simulation technique:

Molecular Dynamics, Monte-Carlo, Stochastic Dynamics,

Basic modeling principles

Coarse-graining: Bridging the all-atom to the continuum scale

Quantum

- atoms, electrons and electron clouds included
- explicit solvent
- quantum mechanics

All-atom

- all or most atoms present
- explicit solvent
- molecular dynamics

Coarse-grained

- beads comprising a few atoms
- explicit or implicit solvent
- molecular dynamics

Supra-coarse-grained

- interaction sites comprising many atoms, protein parts or proteins
- implicit solvent
- stochastic dynamics

Continuum

- materials as a continuous mass
- implicit solvent
- continuum mechanics

Basic modeling principles

Different ways of coarse-graining

HIERARCHICAL COARSE-GRAINING (BOTTOM UP)

- Interactions at less detailed level are the result of the collective interactions at more detailed level
- General method applicable to any system (like an algorithm)

Iterative Boltzmann inversion potentials Force matching

PRAGMATIC COARSE-GRAINING (TOP DOWN)

- Reproduce faithfully certain chosen (experimental) proper
- Developed with certain application area in mind

Go models

Martini model

PRO:

UNBIASED

- Physics follows through the hierarchy of models
 - Entirely general approach

CON:

LARGE WORKLOAD

- Need detailed level simulations to derive CG potentials
 - Complicated numerical potentials
 LIMITED VALIDITY
 - Strictly valid for one state point only (new system, new potentials)

PRO:

CHEAP

- Parameterize on empirical data available
 - Simple analytical potentials
 - TRANSFERABLE
 - After parameterizing building blocks, many similar systems can be treated straightforwardly

CON:

BIASED

- Toward parameterized properties
 LIMITED ACCURACY
- Suboptimal representation of underlying detailed resolution

Noid, WG (2013) J. Chem. Phys. 139, 090901; Saunders, MG & Voth, GA (2013). Annu. Rev. Biophy Ingolfsson HI et al, (2013) WIRES Comput. Sci. 4, 225–248

Systematic parameterization combining top-down and bottom-up approaches

Mapping of atoms to building blocks

lipid

The Martini model reduces complexity of real molecules by considering groups of atoms as building blocks - the "Lego" principle

On average 4 heavy atoms (and associated hydrogens) are considered as building block and mapped to a coarse-grain bead

The building block principle

Building block types

C1 C2 C3 C4 **C5**

N₀

Nda

Apolar

Intermediate

Polar

Charged

TUTORIAL Lipids self-assemble into a bilayer, reproducing known membrane properties

Non-bonded interactions of building blocks parameterized based on reproducing experimental thermodynamic data

Bonded interactions parameterized to match conformations of all-atom simulations (or structural databases)

Welcome to the Martinidome

- Chemical specificity
- Fast (10³ speed-up)
- Compatibility
- Versatility

Parameterization:

TOP DOWN

Thermodynamic data
BOTTOM UP

Atomistic simulations

"TOP UP"

What's in a name?

The Martini force field is developed in Groningen and named after **Saint Martin**, patron saint of Groningen

(any association with cocktails is entirely coincidental)

Non-bonded interactions: LJ & Coulomb

Non-bonded interactions described by standard LJ and Coulombic energy functions

- > Potentials are **short-ranged** by use of *cut-off* (1.1 nm, 2-3 neighbors)
- Cut-off artefacts prevented by using potential/force modifiers (so potentials/forces vanish at cut-off)

LJ interaction matrix for Martini beads

LJ interactions depend on hydrophilicity of CG bead nine levels with $2.0 < \varepsilon < 5.6$ kJ/mol; $\sigma = 0.47$ nm tenth level with $\varepsilon = 2.0$; $\sigma = 0.62$ nm

> LJ cross interactions explicitly parameterized (no combination rule!)

		charged (Q)					po	olar (P)	P) intermediate (N) apolar (C				C)	<i>,</i>)					
	_	la	d	а	0		5 4	3	2	1	da	d	а	0		5	4	3	2	1
Q	da	0		0	0	П	0	0	0	1	1	1	1	1	IV	v	VI	VII	IX	IX
	d	0		I	0	11	O	0	0	1	I	1	III	1	IV	v	VI	VII	IX	IX
	a	0		0	1	п	0	0	0	1	I	1	1	ш	IV	V	VI	VII	IX	IX.
	0	II		11	П	IV	1	0	1	11	III	ш	III	ш	IV.	V	VI	VII	IX	EX
P	5	0		0	0	1	0	C	0	0	0	1	I	1	IV	V	VI	VI	VII	VII
	4	0		0	0	0	0.	1		II	11	Ш	III	III	IV	V	VI	VI	VII	VII
	3	0		0	0	1	0		1	11	П	П	П	п	IV	IV	V	V	VI	VII
	2	1		1	1	п	0	II	Li	II	11	п	п	II	ш	IV	IV	V	VI	VII
	1	1		I	I	Ш	0	П	П	AL .	11	77	П	II	Ш	IV	IV	IV	V	VI
N	da	1		I	1	Ш	I	ш	П	II	4.0	II	**	п	IV.	IV	V	VI	VI	VI
	d	1		ш	I	III	1	ш	п	11	п	44	Ш	11	IV	IV	V	VI	VI	VI
		1		1	Ш	Ш	I	ш	П	П	П	П	h	Ш	W	IV	V	VI	VI	VI
	0	IV		IV	IV	IV	IV	IV	IV	Ш	Ш	IV	IV	17	IV	17	IV	IV	V	VI
C	5	V		V	V	V	V	v	IV	IV	IV	IV	IV	IV	IV	IV	IV.	IV	v	V
-	4	VI		VI	VI	VI	VI	VI	V	IV	IV	V	V	V	IV	IV	IV	IV	v	V
	3	VE		VII	VII	VII	VI	VI	V	V	IV	VI	VI	VI	IV	IV	IV	IV	IV	IV
	2	IX		IX	IX	IX	VII	VII	VI	VI	V	VI	VI	VI	V	V	v	IV	IV	W
	1	IX		IX	IX	IX	VIII	VIII	VII	VII	VI	VI	VI	VI	VI	v	V	IV	IV	IV

Top-down: reproducing experimental partitioning data

- LJ interactions are mainly parameterized based on reproducing experimental partitioning free energies
- Free energies obtained from direct counting

Intermediate (N)

Apolar (C)

The Martini bible: mapping CG bead types to chemical buildin

			Δ	G_{HW}	ΔG	piri EW	Δ0	twit.	Δ	opert York	
type	building block	examples	exp	CG	exp	CG	ехр	CG	exp	CG	
$Q_{\alpha \alpha}$	H ₂ N+C ₂ OH	ethanolamine (protonated)		< -30		-18		-13		-18	
Q_d	$H_3N^+=C_3$	1-propylamine (protonated)		< -30		-18		-13		-18	
	NA*OH	sodium (hydrated)		≤ -30		-18		-13		-18	
Q_{i}	PO ₁	phosphate		≤ -30		-18		-13		-18	
	CL-HO	chloride (hydrated)		< -30		-18		-13		-18	_
Q_0	C ₁ N ⁺	choline		≤ -30		-18		-13		-18	
P_5	$H_2N-C_2=0$	acetamide	-27	-28	(-20)	-18	-15	-13	-8	-10	
P_4	$HOH(\times 4)$	water	-25	-23		-14	-10	-7	-8	-9	
	HO-C2-OH	ethanediol	-21	-23		-14		-7	-8	-9	
P_{y}	$HO-C_2=O$	acetic acid	-19	-21	-9	-10	-2	-6	=1	-7	
	C-NH-C=O	methylformamide		-21		-10		-6	-5	-7	
P_2	C_2 —OH	ethanol	-13	-17	-5	-2	-3	1	-2	-2	
\mathbf{P}_{t}	C ₃ -OH	I-propanol	-9	=11	-2	-2	0	1	1	=1	
		2-propanol	-10	-11	-2	-2	-1	1	0	-1	
New	C4-OH	I-butanol	-5	-7	2	0	4	2	4	3	
N_d	$H_2 N = C_3$	1-propylamine	(-6)	-7	(1)	0	(-3)	2	(3)	3	
N.	$C_{i}=0$	2-propanone	-6	-7	1	0	-1	2	-1	3	
	C-NO 2	nitromethane	-6	-7		0		2	-2	3	_
	$C_1=N$	proprionitrile	-5	-7		0		2	1	3	
	C-0-C-0	methylformate	(-6)	-7	(4)	0	(-1)	2	(0)	3	
	C2HC=O	propanal	-4	-7			2	2	3	3	
No	C-0-C1	methoxyethane	(1)	-2		6	(3)	6	(3)	5	
C_3	C ₃ =SH	1-propanethiol		5		10		10		6	
	$C-S-C_2$	methyl ethyl sulfide	(7)	5		10		10	(9)	6	
C_{ν}	$C_2 = C_2$	2-butyne		9		13		13	9	9	
	C=C-C=C	1,3-butadiene	11	9		13		13	11	9	
	$C-X_3$	chloroform	(7)	9	14	13		13	11	9	
C_3	$C_2 = C_2$	2-butene		13		13		13	13	14	
	C ₃ -X	1-chloropropane	12	13		13		13	12	14	
		2-bromopropane		13		13		13	12	14	
C_2	C ₃	propane		16		15		14	14	16	
C_1	C_4	butane	18	18		18		14	16	17	
		isopropane		18		18		14	16	17	

	EXP	CG
${}^{\mathrm{P}_5}_{\mathrm{P}_4}$	-27 -25 -21	-28 -23 -23
P_3	-19	-21 -21
P ₂ P ₁	-13 -9 -10	-21 -17 -11 -11
$egin{smallmatrix} \mathbf{N}_{d} \\ \mathbf{N}_{d} \\ \mathbf{N}_{a} \end{bmatrix}$	-5 (-6) -6 -6 -5 (-6)	-7 -7 -7 -7 -7
N ₀	-4 (1)	-7 -2
C_5	(T)	5
c_4	(7) 11	5 5 9
c_3	(7) 12	9 13 13
$^{\mathrm{C}_2}_{\mathrm{C}_1}$	18	13 16 18 18

Lord of the rings

Rings: Four-to-one mapping inadequate

- Two/three-to-one mapping
- Reduction of interaction size and strength

$$\sigma$$
 = 0.7 * σ_{standard}
 ϵ = 0.75 * $\epsilon_{\text{standard}}$

- Densities & partitioning free energies for benzene and cyclohexane reproduced
- Condensing behavior of cholesterol in membranes similar to all-atom results

Implicit screening of Coulomb potentials

- CG beads that represent charged groups interact through standard Coulomb potential E.g. ions, charged amino acids, ...
- Relative dielectric constant = 15 for implicit screening Effectively distant-dependent due to cutoff at 1.1 nm in combination with a Reaction Field approach

Simple harmonic forms for bonded interactions

Bottom-up approach for bonded interactions

Bonded interactions are parameterized by mapping to all-atom simulations

Bonded potentials provide peptides with 2ndary structure

Proteins require elastic network

Elastic network approach (ElNeDyn) required to maintain 2ndary structure of proteins (Directional H-bonds are missing in Martini!)

EINeDyn:

Harmonic potentials between all $C\alpha$ beads within a cut-off

Why is Martini so fast (1000 x speedup)

- > Less particles, so less interactions to compute
 - Short range potentials only
 - > Less friction, so faster sampling
 - Time steps of 20-30 fs can be used (accurate sampling is less critical)

Martini tools

INSANE: membrane packing tool

Martini tools

MARTINIZE: tool to make protein topologies

"Martinize is a python script to generate Martini protein topology and structure files based on an atomistic structure file"

- can handle different flavors of Martini force fields
- can add elastic networks using ElNeDyn
- can assign 2ndary structure in multiple ways
- can add cys bridges, change charged states ...
- .. and much much more ...

Martini tools

BACKWARD: tool to obtain all-atom configurations

Break time

Properties of lipid membranes match experimental data

		Martini CG	Experimental
Structural			
	Area/lipid (nm²)		
	DPPC	0.66	0.64
	DPPE	0.62	0.60
	DSPC	0.66	0.65
Elastic			
	Bending rigidity (J)	8 x 10 ⁻²⁰	6 x 10 ⁻²⁰
	Area compress. (mN m ⁻¹)	260	230
Thermodynamical			
	Phase transition T (K)	300	315
	Line tension (pN)	30	10-20
Dynamical			
	Lipid diffusion coeff. (cm ² s ⁻¹)	2.5 x 10 ⁻⁷	10 ⁻⁷ -10 ⁻⁸
	Water permeation rate (cm s ⁻¹)	1.5 x 10 ⁻³	~ 10 ⁻³

Lipid conformations match all-atom results

Averaged configurational space sampled by a lipid in a bilayer

Reproducing experimental lipid phase behavior

Partitioning of amino acid residues in lipid bilayers

CG
All-atom
(MacCallum & Tieleman, Biophys. J. 2008.)

Reproducing known structure of protein-protein complexes

repressor of primer (ROP) protein

Tertiary structure changes

- 1 Tb-MscL protein
- 256 DOPC lipids
- 2 μs simulation
- bilayer under tension
- Martini forcefield

Gating of a mechanosensitive membrane protein (MscL) Yefimov et al., Biophys. J., 2008; Melo et al., JACS, 2017

Reproducing co-crystallized lipid binding sites

Binding of cariolipins to cytochrome bc1

Arnarez et al., JACS., 2013

Limitations of the Martini model

Limited resolution

> Martini is 'fuzzy', semi-quantitative nature

	Martini 4-bead	Martini 3-bead	Experimental DMPC
Bilayer Thickness [nm]	4.8	4.2	4.3
Melting Temperature [K]	295	280	295

Limitations of the Martini model

Limited resolution

Realize fuzzy character, and use to your advantage

Martini person:

"My DPPC bilaye melts at 295K"

Annoying referee:

"That is 20K too low!"

Martini person:

"Excuse me, I me to say DMPC"

Convinced referee:

"Happy to accept your publication"

Limitations of the Martini model

Limited fluid range of LJ interactions

> Martini solvents are too structured

- Water freezes too easily
- Solvation free energies not reproduced

Limited fluid range of LJ interactions

Solution:

(future) Use a softer form of the non-bonded potential (now) Use anti-freeze particles to prevent freezing

Anti-freeze particles (BP4) can be added at 5-10 mol% to prevent freezing

To disturb the lattice packing of the uniformly sized solvent particles,
the LJ parameter σ for BP4-P4 interactions is scaled up to 0.57 nm instead of 0.47 nm.

To avoid phase separating of antifreeze and solvent particles,
the strength of the BP4-P4 interaction is raised one level

Directionality of H-bonds is missing

> Secondary structure of protein and DNA is fixed

Martini uses elastic networks to keep biomacromolecules in the desired configuration

Protein folding cannot be simulated

Directionality of H-bonds is missing

> Secondary structure of protein and DNA is fixed

Friction from atomistic degrees of freedom is missing

Kinetics need to be mapped on real time:

- A mapping factor of 2-8 describes friction dominated processes (e.g. lipid diffusion, water permeation)
- Kinetics of more complex processes depend on energy barriers

Friction from atomistic degrees of freedom is missing

> Time scale should be interpreted with care

Missing entropy, compensated by reduced enthalpy

Missing entropy, compensated by reduced enthalpy

- > Temperature dependence off
 - > Driving forces wrong

Solution:

Recalibrate parameters for specific temperatures (not very pragmatic), or interpret driving forces with care (certainly useful!)

Electrostatic screening of water is only implicit

> Change in environment not felt by charged beads

Electrostatic screening of water is only implicit

> Change in environment not felt by charged beads

Electrostatic screening of water is only implicit

Explicit screening by polarizable water model:

Standard Martini water

Polarizable Martini water

Electrostatic screening of water is only implicit

Parameters & properties of polarizable water model:

Parameters		Properties*	
charge WP,WM	q = ±0.46	density	1043 kg m ⁻³
bond W-WP, W-WM	I=0.14 nm	dielectric constant	75.6
angle WP-W-WM	$\theta = 0$ rad	dipole moment	4.9 Debye
	$K_0 = 4.2 \text{ kJ mol}^{-1} \text{ rad}^{-2}$	self diffusion	2.5 10 ⁻⁵ cm ² s ⁻¹
Llww	ε=4.0 kJ mol ⁻¹	hydration free energy	-18.7 kJ mol ⁻¹
	σ=0.47 nm	freezing temperature	282 ± 3 K
relative screening	é,=25	air/water surface tension	30.5 mN/m

♦ Dielectric constant of real water reproduced

Electrostatic screening of water is only implicit

Example of improved behavior with polarizable water: electroporation of an octane slab

(similar to atomistic simulations by Tieleman)

Dry Martini

Martini model with implicit solvent

Enjoy Sampling Martinis!!

"A man must defend his home, his wife, his children, and his martini." - Jackie Gleason