Complex simulations

Most tutorials are about ubiquitine (also today's)

- Single protein chain
- No cofactors
- Easy to set up

What if your system looks more like this?

Preparing your structure for simulating

• Dimer!

- Add missing residues
- Add missing heteroatoms

Delete all detergent molecules

```
REMARK 465
REMARK 465
REMARK 465
              FOLLOWING RESIDUES HAVE MISSING ATOMS (M=MODEL NUMBER;
          RES=RESIDUE NAME; C=CHAIN IDENTIFIER; SSEQ=SEQUENCE NUMBER
REMARK 610
EMARK 610
REMARK 610
REMARK 610
```

Detergents in crystal structure

Detergents in crystal structure

Suprise suprise

DODECYL-BETA-D-MALTOSIDE →
looks like a lipid

Where should I replace my detergents with?

Lipid that is the most similar?

Look in older structures.

Look in literature

→ No real good answer

Coarse graining

Split PDB

- Protein → Martinize.py
 - Be careful Backward.py can also CG your protein, but it does not make an Elnedyn network, but most importantly the mapping of the backbone bead is different for the Elnedyn version

• Cofactor → Backward.py

Embed in a bilayer

- Insane
 - OPM database → contains calculated position of the bilayer

Parameterization

PSII dimer (cyanobacteria)#

2x19 protein subunits

cofactors per monomer:

chlorophyll A (35)

pheophytin (2)

heme (2)

β-carotene (12)

plastoquinone (2)

ox. evolving compl. (1)

lipid composition:

18:1-16:0 PG (10%)

18:1-16:0 DGDG (25%)

18:1-16:0 MGDG (40%)

18:1-16:0 SQDG (15%)

di16:0 SQDG (10%)

+ co-crystall. lipids (> 40 total)

β-carotenes are very mobile

Chlorophylls are bound in 3 different ways

CG a bit too fat...

Fine grained

Coarse grained

Chlorophylls are bound in 3 different ways

Martinize.py \rightarrow a itp file for every chain and

cofactor Chlorophyll-A Coarse-grained ; If using this topology, please site: ;MODIFIED CLA CG topology JANUARY 2014, modiefied dil; De Jong et al ... [moleculetype] molname nrexcl [moleculetype] Created by py version 2.2 Using the following options: -f monomer no COfactor.pdb -cCLA : molname nrexcl ./Protein T.itp ; MTTTLQRRESANLWERFCNWVTSTDNRLYVGWFGVIMIPTLLAATICFVIAFIAAPPV[[atoms] <u> QGSFSDGMPLGISGTFNFMIVFQAEH</u>NILMHPFHQLGVAGVFGGALFCAMHGSLVTSSLIF;id type resnr residu atom cgnr charge /Protein Y.itp ;mapping to keep molecule symmetric and use small be;;id type resnr residu atom cgnr charge ; Secondary Structure: ;Eight beads in the ring preserves symmetry better th; mapping to keep molecule symmetric and use smal /Protein I.itp ; CCCCSCCCSSCC1111H2222TCTTSSSCC1111HHHHHHHHHHHHHHHHHH2222CCCCC; Eight beads in the ring gives more rigid molecule ; Eight beads in the ring preserves symmetry bett /Protein A.itp ; Eight beads in the ring gives more rigid molecu SP3 ;Eight bead ring is to heavy. /Protein M.itp SC3 CLA CHA 0.00 SP3 PH₀ NA /Protein C.itp [moleculetype] SP3 NB -0.25 SC3 PH₀ CHA Name **Exclusions** SC3 CHB 4 0.00 SP3 PH0 NB /Protein J.itp Protein A SP3 NC -0.25 SC3 PH0 CHB 0.0 SC3 CLA CHC 0.00 SP3 PH₀ NC /Protein F.itp [atoms] SP3 -0.25 SC3 PH₀ CHC /Protein D.itp SC3 SP3 CLA CHD 8 0.00 PH₀ ND MET SC1 SC3 SC3 0.0 C1A 9 0.00 PH0 CHD /Protein U.itp THR BB SC3 CLA C2A 10 0.00 9 SC3 PH0 C1A 9 THR SC1 0.0000 ; C /Protein E.itp SC3 CLA SC3 C1B 11 0.00 10 PH0 C2A THR BB SC3 C2B 12 SC3 C1B CLA 0.00 11 PH0 Ρ1 THR SC1 /Protein 0.itp 6 0.0000 ; C 13 SC4 C1C 13 12 SC3 0.00 C2B 12 P5 BB C2C 14 SC4 /Protein K.itp 14 0.00 13 C1C 13 Ρ1 Na CLA T1 15 0.00 14 SNa PH0 C2C 14 LEU BB 0.0000 ; S /Protein H.itp C1 SC3 CLA C1D 16 15 0.00 Na PH0 T1 15 LEU 10 0.0000; S SC3 C2D 17 SC3 C1D 16 GLN 11 0.0000 ; C 0.00 /Protein X.itp 17 SC3 C2D GLN SC1 18 T2 18 0.00 17 12 0.0000 ; C /Protein V.itp ARG BB 19 **C3** CLA T3 19 18 PH0 T2 18 0.00 ARG SC1 14 0.0000 ; C C1 CLA T4 20 0.00 19 C3 PH0 T3 19 /Protein Z.itp **ARG** SC2 21 C1 T5 21 0.00 20 C1 T4 20 /Protein L.itp 16 0.0000 ; C 22 C1 T6 22 21 C1 PH0 T5 21 CLA 0.00 ARG SC1 23 CLA MG 23 1.00 22 T6 /Protein B.itp ARG SC2 GLU [bonds] 11:13:18@~/parameter/PS SC1 GLU bonds between beads 21 P5 10 SER BB : The bonds are finetuned against a backmapped gromos; bonds between beads 22 Ρ1 SER SC1 10 22 0.0000 : S 0.273 30000.0 The bonds are finetuned against a backmapped of 23 Ρ4 11 ALA BB 23 0.0000 ; C 0.298 23000.0 0.273 30000.0 24 P5 12 ASN BB 24 0.0000 ; C 0.318 25000.0 10 0.298 23000.0 25 P5 12 ASN SC1 25 0.0000 ; C 11 0.274 25000.0 10 0.318 25000.0 13 LEU BB 26 0.0000; 1 0.319 23000.0 11 0.274 25000.0 27 C113 LEU SC1 27 0.0000; 1 0.29 21000.0 12 0.319 23000.0 28 Nd 14 TRP BB 28 0.0000 : 1 11 12 0.24 25000.0 0.29 21000.0 29 SC4 14 TRP SC1 29 0.0000 ; 1 13 14 21000.0 SNd SC2 14 TRP 30 0.0000 : 1 14 14 25000.0 31 TRP SC3 31 0.0000 ; 1 14 14 13 0.29 20000.0 0.28 25000.0 SC5 32 0.0000 ; 1

22000 0

14

TRP

SC4

Binding cofactors into your protein? TP needed

; Name		Exclusions				
PSII_Pro	tein	1				
[atoms						
;CHAIN A						
1	Qd	1	MET	BB	1	1 ; C
2 3	C5	1	MET	SC1	2	0 ; C
4	P5 P1	2 2	THR THR	BB SC1	3 4	0 ; C 0 ; C
5	P1	3	THR	BB	5	0 ; C 0 : C
6	P1	3	THR	SC1	6	0 ; C
7	P5	<u>5</u> 4	THR	BB	7	0 ; C
8	P1	4	THR	SC1	8	0 ; C
9	P5	5	LEU	BB	9	0;5
10	C1	5	LEU	SC1	10	0 ; S
11	P5	6	GLN	ВВ	11	0 ; C
PSII.itp						
770	P5	343	LEU	BB	770	0 ; C
771	<u>C1</u>	343	LEU	SC1	771	0 ; C
772	Qa	344	ALA	BB	772	-1 ; C
; CHAIN B			61.14			
773	Qd	2	GLY	BB	773	1 ; C
774	P5	3	LEU	BB	774	0 ; C
775	C1	3 4	LEU	SC1	775 776	0 ; C 0 ; C
776 777	P4 C3	4	PRO PRO	BB SC1	776 777	0 ; C 0 ; C
778	P5	5	TRP	BB	778	0 ; C
779	SC4	5	TRP	SC1	779	0 ; C
789	SNd	5	TRP	SC2	780	0 ; C
781	SC5	5	TRP	SC3	781	0 ; C
782	SC5	5	TRP	SC4	782	0 ; C
783	P5	6	TYR	BB	783	0 : C
784	SC4	6	TYR	SC1	784	0 ; C
785	SC4	6	TYR	SC2	785	0 ; C
PSII.itp						
5775	P5	38	GLN	BB	5775	0 ; C
5776	P4	38	GLN	SC1	5776	0 ; C
5777	P5	39	ARG	BB	5777	0 ; C
5778	NO	39	ARG	SC1	5778	0 ; C
5779 5770	Qd	39	ARG	SC2	5779	1 ; C -1 : C
5780 5781	Qa D1	40	SER	BB CC1	<u>5780</u>	
5781 ;CHAIN Z	P1	40	SER	SC1	5781	0 ; C
5782	Qd	1	MET	ВВ	5782	1 ; C
5783	C5	1	MET	SC1	5783	0 : C
5784	Nd	2	THR	BB	5784	0 : 1
5785	P1	2	THR	SC1	5785	0 : 1
5786	Nd	3	ILE	BB	5786	0 ; 1
5787	C1	3	ILE	SC1	5787	0;1
5788	Nd	4	LEU	BB	5788	0 ; 1
5789	C1	4	LEU	SC1	5789	0; 1
PSII.itp	1					
/CHA						

		• •			•	O O .
5892	C1	52	LEU	SC1	5892	0 ; H
5893	NO	53	VAL	BB	5893	0 ; H
5894	C2	53	VAL	SC1	5894	0 ; H
5895	Na	54	VAL	BB	5895	0;2
5896	C2	54	VAL	SC1	5896	0 ; 2
5897	Na	55	GLY	BB	5897	0 ; 2
5898	Na	56	VAL	BB	5898	0 ; 2
5899	C2	56	VAL	SC1	5899	0 ; 2
5900	Na	57	LEU	BB	5900	0 ; 2
5901	C1	57	LEU	SC1	5901	0 ; 2
5902	P5	58	ASN	BB	5902	0 ; C
5903	P5	58	ASN	SC1	5903	0 ; C
5904	P5	59	PHE	BB	5904	0 ; C
5905	SC5	59	PHE	SC1	5905	0 ; C
5906	SC5	59	PHE	SC2	5906	0 ; C
5907	SC5	59	PHE	SC3	5907	0 ; C
5908	P5	60	PHE	BB	5908	0 ; C
5909	SC5	60	PHE	SC1	5909	0 ; C
5910	SC5	60	PHE	SC2	5910	0 ; C
5911	SC5	60	PHE	SC3	5911	0 ; C
5912	Nda	61	VAL	BB	5912	0 ; T
5913	C2	61	VAL	SC1	5913	0 ; T
5914	Qa	62	VAL	BB	5914	-1 ; C
5915	C2	62	VAL	SC1	5915	0 ; C
;======	======	========	=====		======	=======================================
; CLA	cna	604	61.4		5016	0.25
5916	SP3	604	CLA	NA	5916	-0.25
5917	SC3	604	CLA	CHA	5917	0 -0.25
5918	SP3	604	CLA	NB	5918	
5919	SC3	604	CLA	CHB	5919	0 -0.25
5920 5921	SP3 SC3	604 604	CLA CLA	NC CHC	5920	-0.25
592E 5922	SP3	604	CLA	ND	5921 5922	-0.25
5923	SC3	604	CLA	CHD	5923	-0.23
5924	SC3	604	CLA	C1A	5924	Ö
5925	SC3	604	CLA	C2A	5924	9
5926	SC3	604	CLA	C1B	5926	Ö
5927	SC3	604	CLA	C2B	5927	Ö
5928	SC4	604	CLA	C1C	5928	0
5929	SNa	604	CLA	C2C	5929	Ö
5930	Na	604	CLA	T1	5930	9
5931	SC3	604	CLA	CID	5931	Ö
5932	SC3	604	CLA	C2D	5932	9
5933	Na	604	CLA	T2	5933	0
5934	C3	604	CLA	T3	5934	0
5935	C1	604	CLA	T4	5935	o O
5936	C1	604	CLA	T5	5936	0
5937	C1	604	CLA	T6	5937	0
5938	SQO	604	CLA	MG	5938	1
5939	SP3	607	CLA	NA	5939	-0.25
5940	SC3	607	CLA	CHA	5940	0
5941	SP3	607	CLA	NB	5941	-0.25

6750	SC3	642	HEM	CHC		0	
6751	SP1	642	HEM	ND	6751	-0.1	
6752	SC3	642	HEM	CHD		0	
6753	SC3	642	HEM	C2A		0	
6754	SC3	642	<u>H</u> EM	C3A	6754	0	
6755	SC3	642	HEM	C2B		0	
6756	SC3	642	HEM	C3B		0	
6757	SC3	642	HEM	C1C		0	
6758	SC3	642	HEM	C2C		0	
6759	Qa	642	HEM	C3C		-1	
6760	SC3	642	HEM	C1D		0	
6761	SC3	642	HEM	C2D		0	
6762	Qa	642	HEM	C3D		-1	
6763	SQ0	642	HEM	FE	6763	0.4	
;0EX							
6764	Q0	601	0EX	XCA	6764		; the to
oxyl g					neutralized		by the 0
6765	QO	601	0EX	X1	6765	1.5	
6766	QO	601	0EX	X2	6766	1.5	
6767	Q0	601	0EX	Х3	6767	1.5	
; FE		500			6766		
6768	Q0	603	FE2	FE	6768	+2	
;BCT		601	DCT	ВСТ	6766		
6769	Qda	681	BCT	BCT	6769	-1	
; CA	00	7.67			6770		
6770	Q0	767	CA	CA		+2	
6771	Q0	796	CA	CA		+2	
6772	Q0	803	CA	CA	6772	+2	
; MG	00	771	MC	MC	6772		
6773	Q0	771	MG	MG	6773	+2	
; CL	00	679	CL	CL-	6774	-1	
6774	Q0	680	CL	CL-		-1	
6775 6776	Q0	808	CL	CL-		-1	
; PHEOPI		000	CL	CL-	0770	-1	
6777	SP3	608	PH0	NA	6777	0	
6778	SC3	608	PHO	CHA		0	
6779	SP3	608	PHO	NB		0	
6780	SC3	608	PHO	CHB		0	
6781	SP3	608	PHO	NC		0	
	SC3	608	PHO PHO	CHC		0	
6782 6783	SP3	608	PHO	ND		0	
6784	SC3	608	PHO	CHD		0	
		608				0	
6785	SC3 SC3		PHO	C1A		0	
6786		608	PHO	C2A		0	
6787 6788	SC3	608 608	PH0 PH0	C1B C2B		0	
	SC3					0	
6789	SC4	608	PHO	C1C		9	
6790	SNa Na	608	PHO	C2C T1		0	
6791		608	PH0 PH0			0	
6792	SC3	608		C1D		0	
6793	SC3	608	PH0	C2D	6793	Ū	

Everything ready?

- Good energy minimization
 - Muliple rounds
- Careful equilibration
 - Slowly increasing
 - Time step
 - temperature

Where should i look at?

- [MOVIE PSII TOP]
- Nothing seems to happen
- /to much to look at.

PLQ exchange cavity

Analysis

Counting PLQs entering/leaving PSII

- PLQs are long molecules
- Entry/exit is slow
- PLQs can enter partly and then go back
- PLQ can be in 2 channels at the same time
- Channels move over time

Track the PLQs on a bead level

- For every PLQ bead, each frame:
 - Is it in contact with any of the three channels
 - If it is inside or outside the cavity

- For every PLQ
 - If more than 70% of its beads moved through the same channel
 - entry/exit event

PLQ ENTERING MOVIE

Stromal

Lipid binding sites

How to define a binding site

- Define 'phrases'
 - Amino acids a lipid is in contact with at a frame
 - Total number of phrases = number of lipids x frames
- Cluster phrases
- From clusters define binding sites

Residence times

• Double cut off method \rightarrow removes noise

- Lipid is in contact with binding site
 - Once it enters red ring
- Lipid is not in contact anymore
 - When leaving blue ring

Conclusion

- Carefully prepare your system, it will take a long time!
- Look a lot at your simulations:
 - Only protein
 - Protein with lipids
 - Protein cofactors
 - Cofactors lipids
- Team up with smart colleagues (e.g. writing scripts)
- Make descisions
 - Often there is not a right way to do things